## Fraction Worksheets

Conversion :: Addition :: Subtraction :: Multiplication :: Division

## Conversions

Fractions - addition, fractions - subtraction, fractions - multiplication, fractions - division.

- Skip to main content
- Skip to primary sidebar
- Skip to footer

## Additional menu

Khan Academy Blog

## Free Math Worksheets — Over 100k free practice problems on Khan Academy

Looking for free math worksheets.

You’ve found something even better!

That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional math worksheets – more instantaneous, more interactive, and more fun!

## Just choose your grade level or topic to get access to 100% free practice questions:

Kindergarten, basic geometry, pre-algebra, algebra basics, high school geometry.

- Trigonometry

## Statistics and probability

High school statistics, ap®︎/college statistics, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra.

- Addition and subtraction
- Place value (tens and hundreds)
- Addition and subtraction within 20
- Addition and subtraction within 100
- Addition and subtraction within 1000
- Measurement and data
- Counting and place value
- Measurement and geometry
- Place value
- Measurement, data, and geometry
- Add and subtract within 20
- Add and subtract within 100
- Add and subtract within 1,000
- Money and time
- Measurement
- Intro to multiplication
- 1-digit multiplication
- Addition, subtraction, and estimation
- Intro to division
- Understand fractions
- Equivalent fractions and comparing fractions
- More with multiplication and division
- Arithmetic patterns and problem solving
- Quadrilaterals
- Represent and interpret data
- Multiply by 1-digit numbers
- Multiply by 2-digit numbers
- Factors, multiples and patterns
- Add and subtract fractions
- Multiply fractions
- Understand decimals
- Plane figures
- Measuring angles
- Area and perimeter
- Units of measurement
- Decimal place value
- Add decimals
- Subtract decimals
- Multi-digit multiplication and division
- Divide fractions
- Multiply decimals
- Divide decimals
- Powers of ten
- Coordinate plane
- Algebraic thinking
- Converting units of measure
- Properties of shapes
- Ratios, rates, & percentages
- Arithmetic operations
- Negative numbers
- Properties of numbers
- Variables & expressions
- Equations & inequalities introduction
- Data and statistics
- Negative numbers: addition and subtraction
- Negative numbers: multiplication and division
- Fractions, decimals, & percentages
- Rates & proportional relationships
- Expressions, equations, & inequalities
- Numbers and operations
- Solving equations with one unknown
- Linear equations and functions
- Systems of equations
- Geometric transformations
- Data and modeling
- Volume and surface area
- Pythagorean theorem
- Transformations, congruence, and similarity
- Arithmetic properties
- Factors and multiples
- Reading and interpreting data
- Negative numbers and coordinate plane
- Ratios, rates, proportions
- Equations, expressions, and inequalities
- Exponents, radicals, and scientific notation
- Foundations
- Algebraic expressions
- Linear equations and inequalities
- Graphing lines and slope
- Expressions with exponents
- Quadratics and polynomials
- Equations and geometry
- Algebra foundations
- Solving equations & inequalities
- Working with units
- Linear equations & graphs
- Forms of linear equations
- Inequalities (systems & graphs)
- Absolute value & piecewise functions
- Exponents & radicals
- Exponential growth & decay
- Quadratics: Multiplying & factoring
- Quadratic functions & equations
- Irrational numbers
- Performing transformations
- Transformation properties and proofs
- Right triangles & trigonometry
- Non-right triangles & trigonometry (Advanced)
- Analytic geometry
- Conic sections
- Solid geometry
- Polynomial arithmetic
- Complex numbers
- Polynomial factorization
- Polynomial division
- Polynomial graphs
- Rational exponents and radicals
- Exponential models
- Transformations of functions
- Rational functions
- Trigonometric functions
- Non-right triangles & trigonometry
- Trigonometric equations and identities
- Analyzing categorical data
- Displaying and comparing quantitative data
- Summarizing quantitative data
- Modeling data distributions
- Exploring bivariate numerical data
- Study design
- Probability
- Counting, permutations, and combinations
- Random variables
- Sampling distributions
- Confidence intervals
- Significance tests (hypothesis testing)
- Two-sample inference for the difference between groups
- Inference for categorical data (chi-square tests)
- Advanced regression (inference and transforming)
- Analysis of variance (ANOVA)
- Scatterplots
- Data distributions
- Two-way tables
- Binomial probability
- Normal distributions
- Displaying and describing quantitative data
- Inference comparing two groups or populations
- Chi-square tests for categorical data
- More on regression
- Prepare for the 2020 AP®︎ Statistics Exam
- AP®︎ Statistics Standards mappings
- Polynomials
- Composite functions
- Probability and combinatorics
- Limits and continuity
- Derivatives: definition and basic rules
- Derivatives: chain rule and other advanced topics
- Applications of derivatives
- Analyzing functions
- Parametric equations, polar coordinates, and vector-valued functions
- Applications of integrals
- Differentiation: definition and basic derivative rules
- Differentiation: composite, implicit, and inverse functions
- Contextual applications of differentiation
- Applying derivatives to analyze functions
- Integration and accumulation of change
- Applications of integration
- AP Calculus AB solved free response questions from past exams
- AP®︎ Calculus AB Standards mappings
- Infinite sequences and series
- AP Calculus BC solved exams
- AP®︎ Calculus BC Standards mappings
- Integrals review
- Integration techniques
- Thinking about multivariable functions
- Derivatives of multivariable functions
- Applications of multivariable derivatives
- Integrating multivariable functions
- Green’s, Stokes’, and the divergence theorems
- First order differential equations
- Second order linear equations
- Laplace transform
- Vectors and spaces
- Matrix transformations
- Alternate coordinate systems (bases)

## Frequently Asked Questions about Khan Academy and Math Worksheets

Why is khan academy even better than traditional math worksheets.

Khan Academy’s 100,000+ free practice questions give instant feedback, don’t need to be graded, and don’t require a printer.

## What do Khan Academy’s interactive math worksheets look like?

Here’s an example:

## What are teachers saying about Khan Academy’s interactive math worksheets?

“My students love Khan Academy because they can immediately learn from their mistakes, unlike traditional worksheets.”

## Is Khan Academy free?

Khan Academy’s practice questions are 100% free—with no ads or subscriptions.

## What do Khan Academy’s interactive math worksheets cover?

Our 100,000+ practice questions cover every math topic from arithmetic to calculus, as well as ELA, Science, Social Studies, and more.

## Is Khan Academy a company?

Khan Academy is a nonprofit with a mission to provide a free, world-class education to anyone, anywhere.

## Want to get even more out of Khan Academy?

Then be sure to check out our teacher tools . They’ll help you assign the perfect practice for each student from our full math curriculum and track your students’ progress across the year. Plus, they’re also 100% free — with no subscriptions and no ads.

## Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo.

For learners For teachers For parents

- Pre-Algebra Topics
- Algebra Topics
- Algebra Calculator
- Algebra Cheat Sheet
- Algebra Practice Test
- Algebra Readiness Test
- Algebra Formulas
- Want to Build Your Own Website?

Sign In / Register

## Solving Equations with Fractions

I know fractions are difficult, but with these easy step-by step instructions you'll be solving equations with fractions in no time.

Do you start to get nervous when you see fractions? Do you have to stop and review all the rules for adding, subtracting, multiplying and dividing fractions?

If so, you are just like almost every other math student out there! But... I am going to make your life so much easier when it comes to solving equations with fractions!

Our first step when solving these equations is to get rid of the fractions because they are not easy to work with!

Let see what happens with a typical two-step equation with the distributive property.

In this problem, we would typically distribute the 3/4 throughout the parenthesis and then solve. Let's see what happens:

Yuck! That just made this problem worse! Now we have two fractions to contend with and that means subtracting fractions and multiplying fractions.

So... let's stop here and say,

We DO NOT want to do this! DO NOT distribute fractions.

We are going to learn how to get rid of the fractions and make this much more simple!

So... what do we do? We are going to get rid of just the denominator in the fraction, so we will be left with the numerator, or just an integer!

I know, easier said than done! It's really not hard, but before I get into it, I want to go over one algebra definition.

We need to discuss the word term.

In Algebra, each term within an equation is separated by a plus (+) sign, minus (-) sign or an equals sign (=). Variable or quantities that are multiplied or divided are considered the same term.

That last example is the most important to remember. If a quantity is in parentheses, it it considered one term!

Let's look at a few examples of how to solve these crazy looking problems!

## Example 1 - Equations with Fractions

Take a look at this example on video if you are feeling overwhelmed.

Hopefully you were able to follow that example. I know it's tough, but if you can get rid of the fraction, it will make these problems so much easier. Keep going, you'll get the hang of it!

In the next example, you will see two fractions. Since they have the same denominator, we will multiply by the denominator and get rid of both fractions.

## Example 2 - Equations with Fractions with the Same Denominator

Did you notice how multiplying by 2 (the denominator of both fractions) allowed us to get rid of the fractions? This is the best way to deal with equations that contain fractions.

In the next example, you will see what happens when you have 2 fractions that have different denominators.

We still want to get rid of the fractions all in one step. Therefore, we need to multiply all terms by the least common multiple. Remember how to find the LCM? If not, check out the LCM lesson here .

## Example 3 - Equations with Two Fractions with Different Denominators

Yes, the equations are getting harder, but if you take it step-by-step, you will arrive at the correct solution. Keep at it - I know you'll get it!

- Solving Equations
- Equations with Fractions

Need More Help With Your Algebra Studies?

Get access to hundreds of video examples and practice problems with your subscription!

Click here for more information on our affordable subscription options.

Not ready to subscribe? Register for our FREE Pre-Algebra Refresher course.

## ALGEBRA CLASS E-COURSE MEMBERS

Click here for more information on our Algebra Class e-courses.

## Need Help? Try This Online Calculator!

Affiliate Products...

On this site, I recommend only one product that I use and love and that is Mathway If you make a purchase on this site, I may receive a small commission at no cost to you.

Privacy Policy

Let Us Know How we are doing!

send us a message to give us more detail!

Would you prefer to share this page with others by linking to it?

- Click on the HTML link code below.
- Copy and paste it, adding a note of your own, into your blog, a Web page, forums, a blog comment, your Facebook account, or anywhere that someone would find this page valuable.

Copyright © 2009-2020 | Karin Hutchinson | ALL RIGHTS RESERVED.

- Skills by Standard
- Skills by Grade
- Skills by Category

Go to profile

- Assignments
- Assessments
- Report Cards
- Our Teachers

Common Core - State Standards Initiative

Being able to round and estimate numbers enables people to perform calculations in their head quickly and without using a calculator. Math Games motivates students to practice and hone this important skill by blending learning with play in its appealing online games!

Pupils can use our resources to practice:

- Understanding, identifying and comparing fractions of numbers and shapes
- Making equivalent fractions and reducing fractions
- Performing calculations with fractions and mixed numbers
- Converting between fractions, percents, decimals and mixed numbers

Other resources for teachers and parents include downloadable worksheets and apps, and a digital textbook. We have activities for every grade and ability level, and all of them are aligned with the Common Core State Standards for Mathematics. Choose a skill to start playing!

[FREE] Fun Math Games & Activities Packs

Always on the lookout for fun math games and activities in the classroom? Try our ready-to-go printable packs for students to complete independently or with a partner!

In order to access this I need to be confident with:

Inverse operations

## Solve equations with fractions

Here you will learn about how to solve equations with fractions, including solving equations with one or more operations. You will also learn about solving equations with fractions where the unknown is the denominator of a fraction.

Students will first learn how to solve equations with fractions in 7th grade as part of their work with expressions and equations and expand that knowledge in 8th grade.

## What are equations with fractions?

Equations with fractions involve solving equations where the unknown variable is part of the numerator and/or denominator of a fraction.

The numerator (top number) in a fraction is divided by the denominator (bottom number).

To solve equations with fractions, you will use the “balancing method” to apply the inverse operation to both sides of the equation in order to work out the value of the unknown variable.

The inverse operation of addition is subtraction.

The inverse operation of subtraction is addition.

The inverse operation of multiplication is division.

The inverse operation of division is multiplication.

For example,

\begin{aligned} \cfrac{2x+3}{5} \, &= 7\\ \colorbox{#cec8ef}{$\times \, 5$} \; & \;\; \colorbox{#cec8ef}{$\times \, 5$} \\\\ 2x+3&=35 \\ \colorbox{#cec8ef}{$-\,3$} \; & \;\; \colorbox{#cec8ef}{$- \, 3$} \\\\ 2x & = 32 \\ \colorbox{#cec8ef}{$\div \, 2$} & \; \; \; \colorbox{#cec8ef}{$\div \, 2$}\\\\ x & = 16 \end{aligned}

## Common Core State Standards

How does this relate to 7th grade and 8th grade math?

- Grade 7: Expressions and Equations (7.EE.A.1) Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- Grade 8: Expressions and Equations (8.EE.C.7) Solve linear equations in one variable.
- Grade 8: Expressions and Equations (8.EE.C.7b) Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

## How to solve equations with fractions

In order to solve equations with fractions:

Identify the operations that are being applied to the unknown variable.

Apply the inverse operations, one at a time, to both sides of the equation.

Write the final answer, checking that it is correct.

## [FREE] End of Year Math Assessments (Grade 4 & Grade 5)

Assess math progress for the end of grade 4 and grade 5 or prepare for state assessments with these mixed topic, multiple choice questions and extended response questions!

## Solve equations with fractions examples

Example 1: equations with one operation.

Solve for x \text{: } \cfrac{x}{5}=4 .

The unknown is x.

Looking at the left hand side of the equation, the x is divided by 5.

\cfrac{x}{5}

2 Apply the inverse operations, one at a time, to both sides of the equation.

The inverse of “dividing by 5 ” is “multiplying by 5 ”.

You will multiply both sides of the equation by 5.

3 Write the final answer, checking that it is correct.

The final answer is x=20.

You can check the answer by substituting the answer back into the original equation.

\cfrac{20}{5}=20\div5=4

## Example 2: equations with one operation

Solve for x \text{: } \cfrac{x}{3}=8 .

Looking at the left hand side of the equation, the x is divided by 3.

\cfrac{x}{3}

The inverse of “dividing by 3 ” is “multiplying by 3 ”.

You will multiply both sides of the equation by 3.

The final answer is x=24.

\cfrac{24}{3}=24\div3=8

## Example 3: equations with two operations

Solve for x \text{: } \cfrac{x \, + \, 1}{2}=7 .

Looking at the left hand side of the equation, 1 is added to x and then divided by 2 (the denominator of the fraction).

\cfrac{x \, + \, 1}{2}

First, clear the fraction by multiplying both sides of the equation by 2.

Then, subtract 1 from both sides.

The final answer is x=13.

\cfrac{13 \, +1 \, }{2}=\cfrac{14}{2}=14\div2=7

## Example 4: equations with two operations

Solve for x \text{: } \cfrac{x}{4}-2=3 .

Looking at the left hand side of the equation, x is divided by 4 and then 2 is subtracted.

\cfrac{x}{4}-2

First, add 2 to both sides of the equation.

Then, multiply both sides of the equation by 4.

\cfrac{20}{4}-2=20\div4-2=5-2=3

## Example 5: equations with three operations

Solve for x \text{: } \cfrac{3x}{5}+1=7 .

Looking at the left hand side of the equation, x is multiplied by 3, then divided by 5 , and then 1 is added.

\cfrac{3x}{5}+1

First, subtract 1 from both sides of the equation.

Then, multiply both sides of the equation by 5.

Finally, divide both sides by 3.

The final answer is x=10.

\cfrac{3 \, \times \, 10}{5}+1=\cfrac{30}{5}+1=6+1=7

## Example 6: equations with three operations

Solve for x \text{: } \cfrac{2x-1}{7}=3 .

Looking at the left hand side of the equation, x is multiplied by 2, then 1 is subtracted, and the last operation is divided by 7 (the denominator).

\cfrac{2x-1}{7}

First, multiply both sides of the equation by 7.

Next, add 1 to both sides.

The final answer is x=11.

\cfrac{2 \, \times \, 11-1}{7}=\cfrac{22-1}{7}=\cfrac{21}{7}=3

## Example 7: equations with the unknown as the denominator

Solve for x \text{: } \cfrac{24}{x}=6 .

Looking at the left hand side of the equation, x is the denominator. 24 is divided by x.

\cfrac{24}{x}

You need to multiply both sides of the equation by x.

Then, you can divide both sides by 6.

The final answer is x=4.

\cfrac{24}{4}=24\div4=6

## Example 8: equations with the unknown as the denominator

Solve for x \text{: } \cfrac{18}{x}-6=3 .

Looking at the left hand side of the equation, x is the denominator. 18 is divided by x , and then 6 is subtracted.

\cfrac{18}{x}-6

First, add 6 to both sides of the equation.

Then, multiply both sides of the equation by x.

Finally, divide both sides by 9.

The final answer is x=2.

\cfrac{18}{2}-6=9-6=3

## Teaching tips for solving equations with fractions

- When students first start working through practice problems and word problems, provide step-by-step instructions to assist them with solving linear equations.
- Introduce solving equations with fractions with one-step problems, then two-step problems, before introducing multi-step problems.
- Students will need lots of practice with solving linear equations. These standards provide the foundation for work with future linear equations in Algebra I and II.
- Provide opportunities for students to explain their thinking through writing. Ensure that they are using key vocabulary, such as, absolute value, coefficient, equation, common factors, inequalities, simplify, etc.

## Easy mistakes to make

- The solution to an equation can be any type of number The unknowns do not have to be integers (whole numbers and their negative opposites). The solutions can be fractions or decimals. They can also be positive or negative numbers.
- The unknown of an equation can be on either side of the equation The unknown, represented by a letter, is often on the left hand side of the equations; however, it doesn’t have to be. It could also be on the right hand side of an equation.

- Lowest common denominator (LCD) It is common to get confused between solving equations involving fractions and adding and subtracting fractions. When adding and subtracting, you need to work out the lowest/least common denominator (sometimes called the least common multiple or LCM). When you solve equations involving fractions, multiply both sides of the equation by the denominator of the fraction.

## Related math equations lessons

- Math equations
- Substitution
- Math formulas
- One step equations
- One step equations with variables

## Practice solve equations with fractions questions

1. Solve: \cfrac{x}{6}=3

You will multiply both sides of the equation by 6, because the inverse of “dividing by 6 ” is “multiplying by 6 ”.

The final answer is x = 18.

\cfrac{18}{6}=18 \div 6=3

2. Solve: \cfrac{x \, + \, 4}{2}=7

Then subtract 4 from both sides.

The final answer is x = 10.

\cfrac{10 \, + \, 4}{2}=\cfrac{14}{2}=14 \div 2=7

3. Solve: \cfrac{x}{8}-5=1

First, add 5 to both sides of the equation.

Then multiply both sides of the equation by 8.

The final answer is x = 48.

\cfrac{48}{8}-5=48 \div 8-5=1

4. Solve: \cfrac{3x \, + \, 2}{4}=2

First, multiply both sides of the equation by 4.

Next, subtract 2 from both sides.

The final answer is x = 2.

\cfrac{3 \, \times \, 2+2}{4}=\cfrac{6 \, + \, 2}{4}=\cfrac{8}{4}=8 \div 4=2

5. Solve: \cfrac{4x}{7}-2=6

Then multiply both sides of the equation by 7.

Finally, divide both sides by 4.

The final answer is x = 14.

\cfrac{4 \, \times \, 14}{7}-2=\cfrac{56}{7}-2=56 \div 7-2=6

6. Solve: \cfrac{42}{x}=7

Then you divide both sides by 7.

The final answer is x = 6.

\cfrac{42}{6}=42 \div 6=7

## Solve equations with fractions FAQs

Yes, you still follow the order of operations when solving equations with fractions. You will start with any operations in the numerator and follow PEMDAS (parenthesis, exponents, multiply/divide, add/subtract), followed by any operations in the denominator. Then you will solve the rest of the equation as usual.

## The next lessons are

- Algebraic expressions
- Fractions operations
- Inequalities
- Types of graphs
- Number patterns

## Still stuck?

At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.

Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.

Find out how we can help your students achieve success with our math tutoring programs .

## [FREE] Common Core Practice Tests (Grades 3 to 6)

Prepare for math tests in your state with these Grade 3 to Grade 6 practice assessments for Common Core and state equivalents.

40 multiple choice questions and detailed answers to support test prep, created by US math experts covering a range of topics!

## Privacy Overview

## Fractions Worksheets

Welcome to the fractions worksheets page at Math-Drills.com where the cup is half full! This is one of our more popular pages most likely because learning fractions is incredibly important in a person's life and it is a math topic that many approach with trepidation due to its bad rap over the years. Fractions really aren't that difficult to master especially with the support of our wide selection of worksheets.

This page includes Fractions worksheets for understanding fractions including modeling, comparing, ordering, simplifying and converting fractions and operations with fractions. We start you off with the obvious: modeling fractions. It is a great idea if students can actually understand what a fraction is, so please do spend some time with the modeling aspect. Relating modeling to real life helps a great deal too as it is much easier to relate to half a cookie than to half a square. Ask most students what you get if you add half a cookie and another half a cookie, and they'll probably let you know that it makes one delicious snack.

The other fractions worksheets on this page are devoted to helping students understand the concept of fractions. From comparing and ordering to simplifying and converting... by the time students master the material on this page, operations of fractions will be a walk in the park.

## Most Popular Fractions Worksheets this Week

## Fraction Circles

Fraction circle manipulatives are mainly used for comparing fractions, but they can be used for a variety of other purposes such as representing and identifying fractions, adding and subtracting fractions, and as probability spinners. There are a variety of options depending on your purpose. Fraction circles come in small and large versions, labeled and unlabeled versions and in three different color schemes: black and white, color, and light gray. The color scheme matches the fraction strips and use colors that are meant to show good contrast among themselves. Do note that there is a significant prevalence of color-blindness in the population, so don't rely on all students being able to differentiate the colors.

Suggested activity for comparing fractions: Photocopy the black and white version onto an overhead projection slide and another copy onto a piece of paper. Alternatively, you can use two pieces of paper and hold them up to the light for this activity. Use a pencil to represent the first fraction on the paper copy. Use a non-permanent overhead pen to represent the second fraction. Lay the slide over the paper and compare the two circles. You should easily be able to tell which is greater or lesser or if the two fractions are equal. Re-use both sheets by erasing the pencil and washing off the marker.

Adding fractions with fraction circles will involve two copies on paper. Cut out the fraction circles and segments of one copy and leave the other copy intact. To add 1/3 + 1/2, for example, place a 1/3 segment and a 1/2 segment into a circle and hold it over various fractions on the intact copy to see what 1/2 + 1/3 is equivalent to. 5/6 or 10/12 should work.

- Small Fraction Circles Small Fraction Circles in Black and White with Labels Small Fraction Circles in Color with Labels Small Fraction Circles in Light Gray with Labels Small Fraction Circles in Black and White Unlabeled Small Fraction Circles in Color Unlabeled Small Fraction Circles in Light Gray Unlabeled
- Large Fraction Circles Large Fraction Circles in Black and White with Labels Large Fraction Circles in Color with Labels Large Fraction Circles in Light Gray with Labels Large Fraction Circles in Black and White Unlabeled Large Fraction Circles in Color Unlabeled Large Fraction Circles in Light Gray Unlabeled

## Fraction Strips

Fractions strips are often used for comparing fractions. Students are able to see quite easily the relationships and equivalence between fractions with different denominators. It can be quite useful for students to have two copies: one copy cut into strips and the other copy kept intact. They can then use the cut-out strips on the intact page to individually compare fractions. For example, they can use the halves strip to see what other fractions are equivalent to one-half. This can also be accomplished with a straight edge such as a ruler without cutting out any strips. Pairs or groups of strips can also be compared side-by-side if they are cut out. Addition and subtraction (etc.) are also possibilities; for example, adding a one-quarter and one-third can be accomplished by shifting the thirds strip so that it starts at the end of one-quarter then finding a strip that matches the end of the one-third mark (7/12 should do it).

Teachers might consider copying the fraction strips onto overhead projection acetates for whole class or group activities. Acetate versions are also useful as a hands-on manipulative for students in conjunction with an uncut page.

The "Smart" Fraction Strips include strips in a more useful order, eliminate the 7ths and 11ths strips as they don't have any equivalents and include 15ths and 16ths. The colors are consistent with the classic versions, so the two sets can be combined.

- Classic Fraction Strips with Labels Classic Fraction Strips in Black and White With Labels Classic Fraction Strips in Color With Labels Classic Fraction Strips in Gray With Labels
- Unlabeled Classic Fraction Strips Classic Fraction Strips in Black and White Unlabeled Classic Fraction Strips in Color Unlabeled Classic Fraction Strips in Gray Unlabeled
- Smart Fraction Strips with Labels Smart Fraction Strips in Black and White With Labels Smart Fraction Strips in Color With Labels Smart Fraction Strips in Gray With Labels

## Modeling fractions

Fractions can represent parts of a group or parts of a whole. In these worksheets, fractions are modeled as parts of a group. Besides using the worksheets in this section, you can also try some more interesting ways of modeling fractions. Healthy snacks can make great models for fractions. Can you cut a cucumber into thirds? A tomato into quarters? Can you make two-thirds of the grapes red and one-third green?

- Modeling Fractions with Groups of Shapes Coloring Groups of Shapes to Represent Fractions Identifying Fractions from Colored Groups of Shapes (Only Simplified Fractions up to Eighths) Identifying Fractions from Colored Groups of Shapes (Halves Only) Identifying Fractions from Colored Groups of Shapes (Halves and Thirds) Identifying Fractions from Colored Groups of Shapes (Halves, Thirds and Fourths) Identifying Fractions from Colored Groups of Shapes (Up to Fifths) Identifying Fractions from Colored Groups of Shapes (Up to Sixths) Identifying Fractions from Colored Groups of Shapes (Up to Eighths) Identifying Fractions from Colored Groups of Shapes (OLD Version; Print Too Light)
- Modeling Fractions with Rectangles Modeling Halves Modeling Thirds Modeling Halves and Thirds Modeling Fourths (Color Version) Modeling Fourths (Grey Version) Coloring Fourths Models Modeling Fifths Coloring Fifths Models Modeling Sixths Coloring Sixths Models
- Modeling Fractions with Circles Modeling Halves, Thirds and Fourths Coloring Halves, Thirds and Fourths Modeling Halves, Thirds, Fourths, and Fifths Coloring Halves, Thirds, Fourths, and Fifths Modeling Halves to Sixths Coloring Halves to Sixths Modeling Halves to Eighths Coloring Halves to Eighths Modeling Halves to Twelfths Coloring Halves to Twelfths

## Ratio and Proportion Worksheets

The equivalent fractions models worksheets include only the "baking fractions" in the A versions. To see more difficult and varied fractions, please choose the B to J versions after loading the A version. More picture ratios can be found on holiday and seasonal pages. Try searching for picture ratios to find more.

- Picture Ratios Autumn Trees Part-to-Part Picture Ratios ( Grouped ) Autumn Trees Part-to-Part and Part-to-Whole Picture Ratios ( Grouped )
- Equivalent Fractions Equivalent Fractions with Blanks Formerly: Find the Missing Number Are These Fractions Equivalent? (Multiplier 2 to 5) Are These Fractions Equivalent? (Multiplier 5 to 15) Equivalent Fractions Models Equivalent Fractions Models with the Simplified Fraction First Equivalent Fractions Models with the Simplified Fraction Second
- Equivalent Ratios Equivalent Ratios with Blanks Only on Right Equivalent Ratios with Blanks Anywhere Equivalent Ratios with x 's

## Comparing and Ordering Fractions

Comparing fractions involves deciding which of two fractions is greater in value or if the two fractions are equal in value. There are generally four methods that can be used for comparing fractions. First is to use common denominators . If both fractions have the same denominator, comparing the fractions simply involves comparing the numerators. Equivalent fractions can be used to convert one or both fractions, so they have common denominators. A second method is to convert both fractions to a decimal and compare the decimal numbers. Visualization is the third method. Using something like fraction strips , two fractions can be compared with a visual tool. The fourth method is to use a cross-multiplication strategy where the numerator of the first fraction is multiplied by the denominator of the second fraction; then the numerator of the second fraction is multiplied by the denominator of the first fraction. The resulting products can be compared to decide which fraction is greater (or if they are equal).

- Comparing Proper Fractions Comparing Proper Fractions to Sixths ✎ Comparing Proper Fractions to Ninths (No Sevenths) ✎ Comparing Proper Fractions to Ninths ✎ Comparing Proper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper Fractions to Twelfths ✎

The worksheets in this section also include improper fractions. This might make the task of comparing even easier for some questions that involve both a proper and an improper fraction. If students recognize one fraction is greater than one and the other fraction is less than one, the greater fraction will be obvious.

- Comparing Proper and Improper Fractions Comparing Proper and Improper Fractions to Sixths ✎ Comparing Proper and Improper Fractions to Ninths (No Sevenths) ✎ Comparing Proper and Improper Fractions to Ninths ✎ Comparing Proper and Improper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper and Improper Fractions to Twelfths ✎ Comparing Improper Fractions to Sixths ✎ Comparing Improper Fractions to Ninths (No Sevenths) ✎ Comparing Improper Fractions to Ninths ✎ Comparing Improper Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Improper Fractions to Twelfths ✎

This section additionally includes mixed fractions. When comparing mixed and improper fractions, it is useful to convert one of the fractions to the other's form either in writing or mentally. Converting to a mixed fraction is probably the better route since the first step is to compare the whole number portions, and if one is greater than the other, the proper fraction portion can be ignored. If the whole number portions are equal, the proper fractions must be compared to see which number is greater.

- Comparing Proper, Improper and Mixed Fractions Comparing Proper, Improper and Mixed Fractions to Sixths ✎ Comparing Proper, Improper and Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Proper, Improper and Mixed Fractions to Ninths ✎ Comparing Proper, Improper and Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Proper, Improper and Mixed Fractions to Twelfths ✎
- Comparing Improper and Mixed Fractions Comparing Improper and Mixed Fractions to Sixths ✎ Comparing Improper and Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Improper and Mixed Fractions to Ninths ✎ Comparing Improper and Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Improper and Mixed Fractions to Twelfths ✎
- Comparing Mixed Fractions Comparing Mixed Fractions to Sixths ✎ Comparing Mixed Fractions to Ninths (No Sevenths) ✎ Comparing Mixed Fractions to Ninths ✎ Comparing Mixed Fractions to Twelfths (No Sevenths; No Elevenths) ✎ Comparing Mixed Fractions to Twelfths ✎

Many of the same strategies that work for comparing fractions also work for ordering fractions. Using manipulatives such as fraction strips, using number lines, or finding decimal equivalents will all have your student(s) putting fractions in the correct order in no time. We've probably said this before, but make sure that you emphasize that when comparing or ordering fractions, students understand that the whole needs to be the same. Comparing half the population of Canada with a third of the population of the United States won't cut it. Try using some visuals to reinforce this important concept. Even though we've included number lines below, feel free to use your own strategies.

- Ordering Fractions with Easy Denominators on a Number Line Ordering Fractions with Easy Denominators to 10 on a Number Line Ordering Fractions with Easy Denominators to 24 on a Number Line Ordering Fractions with Easy Denominators to 60 on a Number Line Ordering Fractions with Easy Denominators to 100 on a Number Line
- Ordering Fractions with Easy Denominators on a Number Line (Including Negative Fractions) Ordering Fractions with Easy Denominators to 10 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 24 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 60 + Negatives on a Number Line Ordering Fractions with Easy Denominators to 100 + Negatives on a Number Line
- Ordering Fractions with All Denominators on a Number Line Ordering Fractions with All Denominators to 10 on a Number Line Ordering Fractions with All Denominators to 24 on a Number Line Ordering Fractions with All Denominators to 60 on a Number Line Ordering Fractions with All Denominators to 100 on a Number Line
- Ordering Fractions with All Denominators on a Number Line (Including Negative Fractions) Ordering Fractions with All Denominators to 10 + Negatives on a Number Line Ordering Fractions with All Denominators to 24 + Negatives on a Number Line Ordering Fractions with All Denominators to 60 + Negatives on a Number Line Ordering Fractions with All Denominators to 100 + Negatives on a Number Line

The ordering fractions worksheets in this section do not include a number line, to allow for students to use various sorting strategies.

- Ordering Positive Fractions Ordering Positive Fractions with Like Denominators Ordering Positive Fractions with Like Numerators Ordering Positive Fractions with Like Numerators or Denominators Ordering Positive Fractions with Proper Fractions Only Ordering Positive Fractions with Improper Fractions Ordering Positive Fractions with Mixed Fractions Ordering Positive Fractions with Improper and Mixed Fractions
- Ordering Positive and Negative Fractions Ordering Positive and Negative Fractions with Like Denominators Ordering Positive and Negative Fractions with Like Numerators Ordering Positive and Negative Fractions with Like Numerators or Denominators Ordering Positive and Negative Fractions with Proper Fractions Only Ordering Positive and Negative Fractions with Improper Fractions Ordering Positive and Negative Fractions with Mixed Fractions Ordering Positive and Negative Fractions with Improper and Mixed Fractions

## Simplifying & Converting Fractions Worksheets

Rounding fractions helps students to understand fractions a little better and can be applied to estimating answers to fractions questions. For example, if one had to estimate 1 4/7 × 6, they could probably say the answer was about 9 since 1 4/7 is about 1 1/2 and 1 1/2 × 6 is 9.

- Rounding Fractions with Helper Lines Rounding Fractions to the Nearest Whole with Helper Lines Rounding Mixed Numbers to the Nearest Whole with Helper Lines Rounding Fractions to the Nearest Half with Helper Lines Rounding Mixed Numbers to the Nearest Half with Helper Lines
- Rounding Fractions Rounding Fractions to the Nearest Whole Rounding Mixed Numbers to the Nearest Whole Rounding Fractions to the Nearest Half Rounding Mixed Numbers to the Nearest Half

Learning how to simplify fractions makes a student's life much easier later on when learning operations with fractions. It also helps them to learn that different-looking fractions can be equivalent. One way of demonstrating this is to divide out two equivalent fractions. For example 3/2 and 6/4 both result in a quotient of 1.5 when divided. By practicing simplifying fractions, students will hopefully recognize unsimplified fractions when they start adding, subtracting, multiplying and dividing with fractions.

- Simplifying Fractions Simplify Fractions (easier) Simplify Fractions (harder) Simplify Improper Fractions (easier) Simplify Improper Fractions (harder)
- Converting Between Improper and Mixed Fractions Converting Mixed Fractions to Improper Fractions Converting Improper Fractions to Mixed Fractions Converting Between (both ways) Mixed and Improper Fractions
- Converting Between Fractions and Decimals Converting Fractions to Terminating Decimals Converting Fractions to Terminating and Repeating Decimals Converting Terminating Decimals to Fractions Converting Terminating and Repeating Decimals to Fractions Converting Fractions to Hundredths
- Converting Between Fractions, Decimals, Percents and Ratios with Terminating Decimals Only Converting Fractions to Decimals, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Fractions to Decimals, Percents and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Decimals to Fractions, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Decimals to Fractions, Percents and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Percents to Fractions, Decimals and Part-to- Part Ratios ( Terminating Decimals Only) Converting Percents to Fractions, Decimals and Part-to- Whole Ratios ( Terminating Decimals Only) Converting Part-to-Part Ratios to Fractions, Decimals and Percents ( Terminating Decimals Only) Converting Part-to-Whole Ratios to Fractions, Decimals and Percents ( Terminating Decimals Only) Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios ( Terminating Decimals Only) Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios ( Terminating Decimals Only)
- Converting Between Fractions, Decimals, Percents and Ratios with Terminating and Repeating Decimals Converting Fractions to Decimals, Percents and Part-to- Part Ratios Converting Fractions to Decimals, Percents and Part-to- Whole Ratios Converting Decimals to Fractions, Percents and Part-to- Part Ratios Converting Decimals to Fractions, Percents and Part-to- Whole Ratios Converting Percents to Fractions, Decimals and Part-to- Part Ratios Converting Percents to Fractions, Decimals and Part-to- Whole Ratios Converting Part-to-Part Ratios to Fractions, Decimals and Percents Converting Part-to-Whole Ratios to Fractions, Decimals and Percents Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios Converting Various Fractions, Decimals, Percents and Part-to- Part Ratios with 7ths and 11ths Converting Various Fractions, Decimals, Percents and Part-to- Whole Ratios with 7ths and 11ths

## Multiplying Fractions

Multiplying fractions is usually less confusing operationally than any other operation and can be less confusing conceptually if approached in the right way. The algorithm for multiplying is simply multiply the numerators then multiply the denominators. The magic word in understanding the multiplication of fractions is, "of." For example what is two-thirds OF six? What is a third OF a half? When you use the word, "of," it gets much easier to visualize fractions multiplication. Example: cut a loaf of bread in half, then cut the half into thirds. One third OF a half loaf of bread is the same as 1/3 x 1/2 and tastes delicious with butter.

- Multiplying Two Proper Fraction Multiplying Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ ✎ Multiplying Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Proper Fractions with No Simplifying (Printable Only) Multiplying Two Proper Fractions with All Simplifying (Printable Only) Multiplying Two Proper Fractions with Some Simplifying (Printable Only)
- Multiplying Proper and Improper Fractions Multiplying Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions with No Simplifying (Printable Only) Multiplying Proper and Improper Fractions with All Simplifying (Printable Only) Multiplying Proper and Improper Fractions with Some Simplifying (Printable Only)
- Multiplying Two Improper Fractions Multiplying Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Improper Fractions with No Simplifying (Printable Only) Multiplying Two Improper Fractions with All Simplifying (Printable Only) Multiplying Two Improper Fractions with Some Simplifying (Printable Only)
- Multiplying Proper and Mixed Fractions Multiplying Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper and Mixed Fractions with No Simplifying (Printable Only) Multiplying Proper and Mixed Fractions with All Simplifying (Printable Only) Multiplying Proper and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying Two Mixed Fractions Multiplying Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Two Mixed Fractions with No Simplifying (Printable Only) Multiplying Two Mixed Fractions with All Simplifying (Printable Only) Multiplying Two Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying Whole Numbers and Proper Fractions Multiplying Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
- Multiplying Whole Numbers and Improper Fractions Multiplying Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
- Multiplying Whole Numbers and Mixed Fractions Multiplying Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Multiplying Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Multiplying Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying Proper, Improper and Mixed Fractions Multiplying Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Multiplying Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Multiplying Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying 3 Fractions Multiplying 3 Proper Fractions (Fillable, Savable, Printable) ✎ Multiplying 3 Proper and Improper Fractions (Fillable, Savable, Printable) ✎ Multiplying Proper and Improper Fractions and Whole Numbers (3 factors) (Fillable, Savable, Printable) ✎ Multiplying Fractions and Mixed Fractions (3 factors) (Fillable, Savable, Printable) ✎ Multiplying 3 Mixed Fractions (Fillable, Savable, Printable) ✎

## Dividing Fractions

Conceptually, dividing fractions is probably the most difficult of all the operations, but we're going to help you out. The algorithm for dividing fractions is just like multiplying fractions, but you find the inverse of the second fraction or you cross-multiply. This gets you the right answer which is extremely important especially if you're building a bridge. We told you how to conceptualize fraction multiplication, but how does it work with division? Easy! You just need to learn the magic phrase: "How many ____'s are there in ______? For example, in the question 6 ÷ 1/2, you would ask, "How many halves are there in 6?" It becomes a little more difficult when both numbers are fractions, but it isn't a giant leap to figure it out. 1/2 ÷ 1/4 is a fairly easy example, especially if you think in terms of U.S. or Canadian coins. How many quarters are there in a half dollar?

- Dividing Two Proper Fractions Dividing Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Proper Fractions with No Simplifying (Printable Only) Dividing Two Proper Fractions with All Simplifying (Printable Only) Dividing Two Proper Fractions with Some Simplifying (Printable Only)
- Dividing Proper and Improper Fractions Dividing Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Improper Fractions with No Simplifying (Printable Only) Dividing Proper and Improper Fractions with All Simplifying (Printable Only) Dividing Proper and Improper Fractions with Some Simplifying (Printable Only)
- Dividing Two Improper Fractions Dividing Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Improper Fractions with No Simplifying (Printable Only) Dividing Two Improper Fractions with All Simplifying (Printable Only) Dividing Two Improper Fractions with Some Simplifying (Printable Only)
- Dividing Proper and Mixed Fractions Dividing Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper and Mixed Fractions with No Simplifying (Printable Only) Dividing Proper and Mixed Fractions with All Simplifying (Printable Only) Dividing Proper and Mixed Fractions with Some Simplifying (Printable Only)
- Dividing Two Mixed Fractions Dividing Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Two Mixed Fractions with No Simplifying (Printable Only) Dividing Two Mixed Fractions with All Simplifying (Printable Only) Dividing Two Mixed Fractions with Some Simplifying (Printable Only)
- Dividing Whole Numbers and Proper Fractions Dividing Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
- Dividing Whole Numbers and Improper Fractions Dividing Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
- Dividing Whole Numbers and Mixed Fractions Dividing Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Dividing Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
- Dividing Proper, Improper and Mixed Fractions Dividing Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Dividing Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
- Dividing 3 Fractions Dividing 3 Fractions Dividing 3 Fractions (Some Whole Numbers) Dividing 3 Fractions (Some Mixed) Dividing 3 Mixed Fractions

## Multiplying and Dividing Fractions

This section includes worksheets with both multiplication and division mixed on each worksheet. Students will have to pay attention to the signs.

- Multiplying and Dividing Two Proper Fractions Multiplying and Dividing Two Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Proper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Proper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Proper Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Proper and Improper Fractions Multiplying and Dividing Proper and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper and Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper and Improper Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Two Improper Fractions Multiplying and Dividing Two Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Improper Fractions (Printable Only)
- Multiplying and Dividing Proper and Mixed Fractions Multiplying and Dividing Proper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Two Mixed Fractions Multiplying and Dividing Two Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Two Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Two Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Two Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Whole Numbers and Proper Fractions Fractions Multiplying and Dividing Whole Numbers and Proper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Proper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Proper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Proper Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Whole Numbers and Improper Fractions Multiplying and Dividing Whole Numbers and Improper Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Improper Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Improper Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Improper Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Whole Numbers and Mixed Fractions Multiplying and Dividing Whole Numbers and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Whole Numbers and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Whole Numbers and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing Proper, Improper and Mixed Fractions Multiplying and Dividing Proper, Improper and Mixed Fractions with No Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with All Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying and Dividing Proper, Improper and Mixed Fractions with No Simplifying (Printable Only) Multiplying and Dividing Proper, Improper and Mixed Fractions with All Simplifying (Printable Only) Multiplying and Dividing Proper, Improper and Mixed Fractions with Some Simplifying (Printable Only)
- Multiplying and Dividing 3 Fractions Multiplying/Dividing Fractions (three factors) Multiplying/Dividing Mixed Fractions (3 factors)

## Adding Fractions

Adding fractions requires the annoying common denominator. Make it easy on your students by first teaching the concepts of equivalent fractions and least common multiples. Once students are familiar with those two concepts, the idea of finding fractions with common denominators for adding becomes that much easier. Spending time on modeling fractions will also help students to understand fractions addition. Relating fractions to familiar examples will certainly help. For example, if you add a 1/2 banana and a 1/2 banana, you get a whole banana. What happens if you add a 1/2 banana and 3/4 of another banana?

- Adding Two Proper Fractions with Equal Denominators and Proper Fraction Results Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Equal Denominators and Mixed Fraction Results Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Equal Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Similar Denominators and Proper Fraction Results Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Similar Denominators and Mixed Fraction Results Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Similar Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Unlike Denominators and Proper Fraction Results Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Proper Fractions Result, and Some Simplifying (Printable Only)
- Adding Two Proper Fractions with Unlike Denominators and Mixed Fraction Results Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and No Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and All Simplifying (Printable Only) Adding Two Proper Fractions with Unlike Denominators, Mixed Fractions Result, and Some Simplifying (Printable Only)
- Adding Proper and Improper Fractions with Equal Denominators Adding Proper and Improper Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Equal Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Equal Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only)
- Adding Proper and Improper Fractions with Similar Denominators Adding Proper and Improper Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Similar Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Similar Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only)
- Adding Proper and Improper Fractions with Unlike Denominators Adding Proper and Improper Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Proper and Improper Fractions with Unlike Denominators and No Simplifying (Printable Only) Adding Proper and Improper Fractions with Unlike Denominators and All Simplifying (Printable Only) Adding Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)

A common strategy to use when adding mixed fractions is to convert the mixed fractions to improper fractions, complete the addition, then switch back. Another strategy which requires a little less brainpower is to look at the whole numbers and fractions separately. Add the whole numbers first. Add the fractions second. If the resulting fraction is improper, then it needs to be converted to a mixed number. The whole number portion can be added to the original whole number portion.

- Adding Two Mixed Fractions with Equal Denominators Adding Two Mixed Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Equal Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Equal Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only)
- Adding Two Mixed Fractions with Similar Denominators Adding Two Mixed Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Similar Denominators and Some Simplifying Adding Two Mixed Fractions with Similar Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Similar Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only)
- Adding Two Mixed Fractions with Unlike Denominators Adding Two Mixed Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Two Mixed Fractions with Unlike Denominators and No Simplifying (Printable Only) Adding Two Mixed Fractions with Unlike Denominators and All Simplifying (Printable Only) Adding Two Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only)

## Subtracting Fractions

There isn't a lot of difference between adding and subtracting fractions. Both require a common denominator which requires some prerequisite knowledge. The only difference is the second and subsequent numerators are subtracted from the first one. There is a danger that you might end up with a negative number when subtracting fractions, so students might need to learn what it means in that case. When it comes to any concept in fractions, it is always a good idea to relate it to a familiar or easy-to-understand situation. For example, 7/8 - 3/4 = 1/8 could be given meaning in the context of a race. The first runner was 7/8 around the track when the second runner was 3/4 around the track. How far ahead was the first runner? (1/8 of the track).

- Subtracting Two Proper Fractions with Equal Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Two Proper Fractions with Similar Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Two Proper Fractions with Unlike Denominators and Proper Fraction Results Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Two Proper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Equal Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Similar Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Unlike Denominators and Proper Fraction Results Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Proper Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Equal Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Equal Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Similar Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Similar Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Proper and Improper Fractions with Unlike Denominators and Mixed Fraction Results Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and No Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and All Simplifying (Printable Only) Subtracting Proper and Improper Fractions with Unlike Denominators, Mixed Fractions Results, and Some Simplifying (Printable Only)
- Subtracting Mixed Fractions with Equal Denominators Subtracting Mixed Fractions with Equal Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Equal Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Equal Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Equal Denominators, and Some Simplifying (Printable Only)
- Subtracting Mixed Fractions with Similar Denominators Subtracting Mixed Fractions with Similar Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Similar Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Similar Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Similar Denominators, and Some Simplifying (Printable Only)
- Subtracting Mixed Fractions with Unlike Denominators Subtracting Mixed Fractions with Unlike Denominators, and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and All Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Mixed Fractions with Unlike Denominators, and No Simplifying (Printable Only) Subtracting Mixed Fractions with Unlike Denominators, and All Simplifying (Printable Only) Subtracting Mixed Fractions with Unlike Denominators, and Some Simplifying (Printable Only)

## Adding and Subtracting Fractions

Mixing up the signs on operations with fractions worksheets makes students pay more attention to what they are doing and allows for a good test of their skills in more than one operation.

- Adding and Subtracting Proper and Improper Fractions Adding and Subtracting Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only) Adding and Subtracting Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only) Adding and Subtracting Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)
- Adding and Subtracting Mixed Fractions Adding and Subtracting Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ Adding and Subtracting Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only) Adding and Subtracting Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only) Adding and Subtracting Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only) Adding/Subtracting Three Fractions/Mixed Fractions

## All Operations Fractions Worksheets

- All Operations with Two Proper Fractions with Equal Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Equal Denominators, Proper Fractions Results and Some Simplifying (Printable Only)
- All Operations with Two Proper Fractions with Similar Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Similar Denominators, Proper Fractions Results and Some Simplifying (Printable Only)
- All Operations with Two Proper Fractions with Unlike Denominators and Proper Fraction Results All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and No Simplifying (Printable Only) All Operations with Two Proper Fractions with Unlike Denominators, Proper Fractions Results and All Simplifying (Printable Only) All Operations with Two Proper Fractions with Unlike Denominators, Mixed Fractions Results and Some Simplifying (Printable Only)
- All Operations with Proper and Improper Fractions with Equal Denominators All Operations with Proper and Improper Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Equal Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Equal Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Equal Denominators and Some Simplifying (Printable Only)
- All Operations with Proper and Improper Fractions with Similar Denominators All Operations with Proper and Improper Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Similar Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Similar Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Similar Denominators and Some Simplifying (Printable Only)
- All Operations with Proper and Improper Fractions with Unlike Denominators All Operations with Proper and Improper Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Proper and Improper Fractions with Unlike Denominators and No Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Unlike Denominators and All Simplifying (Printable Only) All Operations with Proper and Improper Fractions with Unlike Denominators and Some Simplifying (Printable Only)
- All Operations with Two Mixed Fractions with Equal Denominators All Operations with Two Mixed Fractions with Equal Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Equal Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Equal Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Equal Denominators and Some Simplifying (Printable Only)
- All Operations with Two Mixed Fractions with Similar Denominators All Operations with Two Mixed Fractions with Similar Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Similar Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Similar Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Similar Denominators and Some Simplifying (Printable Only)
- All Operations with Two Mixed Fractions with Unlike Denominators All Operations with Two Mixed Fractions with Unlike Denominators and No Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and All Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and Some Simplifying (Fillable, Savable, Printable) ✎ All Operations with Two Mixed Fractions with Unlike Denominators and No Simplifying (Printable Only) All Operations with Two Mixed Fractions with Unlike Denominators and All Simplifying (Printable Only) All Operations with Two Mixed Fractions with Unlike Denominators and Some Simplifying (Printable Only)
- All Operations with 3 Fractions All Operations with Three Fractions Including Some Improper Fractions All Operations with Three Fractions Including Some Negative and Some Improper Fractions

## Operations with Negative Fractions Worksheets

Although some of these worksheets are single operations, it should be helpful to have all of these in the same location. There are some special considerations when completing operations with negative fractions. It is usually very helpful to change any mixed numbers to an improper fraction before proceeding. It is important to pay attention to the signs and know the rules for multiplying positives and negatives (++ = +, +- = -, -+ = - and -- = +).

- Adding with Negative Fractions Adding Negative Proper Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Proper Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Mixed Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Mixed Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Adding Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Adding Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Adding Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Adding Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
- Subtracting with Negative Fractions Subtracting Negative Proper Fractions with Unlike Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Proper Fractions with Unlike Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Mixed Fractions with Unlike Denominators Up to Sixths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Mixed Fractions with Unlike Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Subtracting Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Subtracting Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Subtracting Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Subtracting Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
- Multiplying with Negative Fractions Multiplying Negative Proper Fractions with Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Proper Fractions with Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Mixed Fractions with Denominators Up to Sixths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Mixed Fractions with Denominators Up to Twelfths, Proper Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Multiplying Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Multiplying Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Multiplying Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Multiplying Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)
- Dividing with Negative Fractions Dividing Negative Proper Fractions with Denominators Up to Sixths, Mixed Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Proper Fractions with Denominators Up to Twelfths, Mixed Fractions Results and Some Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Mixed Fractions with Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Mixed Fractions with Denominators Up to Twelfths, Mixed Fractions Results and No Simplifying (Fillable, Savable, Printable) ✎ Dividing Negative Proper Fractions with Denominators Up to Sixths, Proper Fraction Results and Some Simplifying (Printable Only) Dividing Negative Proper Fractions with Denominators Up to Twelfths, Proper Fraction Results and Some Simplifying (Printable Only) Dividing Negative Mixed Fractions with Denominators Up to Sixths and Some Simplifying (Printable Only) Dividing Negative Mixed Fractions with Denominators Up to Twelfths and Some Simplifying (Printable Only)

## Order of Operations with Fractions Worksheets

The order of operations worksheets in this section actually reside on the Order of Operations page, but they are included here for your convenience.

- Order of Operations with Fractions 2-Step Order of Operations with Fractions 3-Step Order of Operations with Fractions 4-Step Order of Operations with Fractions 5-Step Order of Operations with Fractions 6-Step Order of Operations with Fractions
- Order of Operations with Fractions (No Exponents) 2-Step Order of Operations with Fractions (No Exponents) 3-Step Order of Operations with Fractions (No Exponents) 4-Step Order of Operations with Fractions (No Exponents) 5-Step Order of Operations with Fractions (No Exponents) 6-Step Order of Operations with Fractions (No Exponents)
- Order of Operations with Positive and Negative Fractions 2-Step Order of Operations with Positive & Negative Fractions 3-Step Order of Operations with Positive & Negative Fractions 4-Step Order of Operations with Positive & Negative Fractions 5-Step Order of Operations with Positive & Negative Fractions 6-Step Order of Operations with Positive & Negative Fractions

Copyright © 2005-2023 Math-Drills.com You may use the math worksheets on this website according to our Terms of Use to help students learn math.

## Fractional Equations

Related Topics: More Lessons NYSED Regents Exam Math Worksheets

High School Math based on the topics required for the Regents Exam conducted by NYSED.

How to solve Fractional Equations?

- Find the Lowest Common Denominator (LCD).
- Multiply both sides of the equation by the LCD (to remove the fractions).
- Solve the equation.
- Check the solution.

Algebra Review 9.1 - Fractional Equations Example: Solve x/3 + 3/4 = 7/3

Algebra Review 9.2 - Fractional Equations Example: Solve 2/x + 1/3 = 5/2x

Algebra Review 9.3 - Fractional Equations Example: Solve x/3 - (x 2 - 5x)/(5x - 7) = 2/3

Algebra Review 9.4 - Fractional Equations Example: Solve x - x/6 = 25

Algebra Review 9.5 - Fractional Equations Example: Solve x + x/5 = 24

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

## Solving Equations With Fractions Worksheets

Solving equations with fractions worksheets have a wide range of questions that help students practice questions and understand how to solve equations with fractions. The various formats of questions supported by these worksheets keep the learning experience fun and engaging.

## Benefits of Solving Equations with Fractions worksheets

Students will get to solve different kinds of problems with fractions, be it mixed fractions or whole. The benefits of solving equations with fractions worksheets are that students will get proficient in dealing with equations and learn how to solve equations with fractions, which are in various forms, can be simplified.

The practice required to solve these questions will help students visualize the questions and solve basic arithmetic calculations quickly. They will be able to use this skill in various real-life scenarios.

## Download Solving Equations with Fractions Worksheet PDFs

The solving equations with fractions worksheets are a fun way to learn equations and fractions and they can be downloaded for free in PDF format.

- Math Practice
- Sign In Register

## Fraction Practice Online

This page covers topics on adding, subtracting and multiplying fractions for students of different ages and abilities. Just spending 30-minute each day will help strength their skills and ace in school tests.

## Divide Fractions

- Dividing two fractions
- Dividing fractions by whole numbers

## Adding Fractions

- Adding fractions with like denominators
- Adding improper fractions
- Adding proper fractions with different denominators
- Adding fractions with unlike denominators
- Adding fractions

## Subtracting Fractions

- Subtracting fractions with like denominators
- Subtracting improper fractions
- Subtracting proper fractions
- Subtracting fractions with unlike denominators
- Subtracting fractions

## Multiply Fractions

- Multiplying simple fractions
- Multiply two fractions
- Multiplying fractions by whole number
- Multiplying mixed numbers
- Fraction multiplication - mixed variations

## Fraction Elementary

- Writing words in fractions
- Writing fractions in words
- Identify the numerator and denominator
- Types of fractions
- Similar and unlike fractions
- Simplify the fraction to lowest term
- Least common denominator
- Improper fractions to mixed numbers
- Mixed numbers to improper fractions
- Equivalent fractions

## Middle school fraction

- Convert fraction to decimal - easy
- Convert fraction to percent - easy
- Convert decimal to fraction - easy
- Convert percent to fraction - easy
- Convert fraction to decimal
- Convert fraction to percent
- Convert decimal to fraction
- Convert percent to fraction
- Reciprocal and multiplicative inverse
- Absolute value of a fraction
- Fraction word problems

Learn fraction Practice math skills

User name or Password is wrong. Please try again

- Sign Up Register as teacher Forgot your Password?

## Become a Member. Enjoy great benefits!

- Track progress in real-time
- Easy access to specialized user reports
- View progress history
- Get notified when new topics are added
- Quiz and additional worksheets
- Special certificates for registered users

## Math practice skills

Math worksheets, monthly newsletter.

Subscribe to our newsletter and be the first to know about all updates!

## iPracticeMath

Math practice

Terms of Use

Privacy policy

© 2023 iPracticeMath | All Rights Reserved | Terms of Use.

## MathPapa Practice

MathPapa Practice has practice problems to help you learn algebra.

## Basic Arithmetic

Subtraction, multiplication, basic arithmetic review, multi-digit arithmetic, addition (2-digit), subtraction (2-digit), multiplication (2-digit by 1-digit), division (2-digit answer), multiplication (2-digit by 2-digit), multi-digit division, negative numbers, addition: negative numbers, subtraction: negative numbers, multiplication: negative numbers, division: negative numbers, order of operations, order of operations 1, basic equations, equations: fill in the blank 1, equations: fill in the blank 2, equations: fill in the blank 3 (order of operations), fractions of measurements, fractions of measurements 2, adding fractions, subtracting fractions, adding fractions: fill in the blank, multiplication: fractions 1, multiplication: fractions 2, division: fractions 1, division: fractions 2, division: fractions 3, addition (decimals), subtraction (decimals), multiplication 2 (example problem: 3.5*8), multiplication 3 (example problem: 0.3*80), division (decimals), division (decimals 2), percentages, percentages 1, percentages 2, chain reaction, balance arithmetic, number balance, basic balance 1, basic balance 2, basic balance 3, basic balance 4, basic balance 5, basic algebra, basic algebra 1, basic algebra 2, basic algebra 3, basic algebra 4, basic algebra 5, algebra: basic fractions 1, algebra: basic fractions 2, algebra: basic fractions 3, algebra: basic fractions 4, algebra: basic fractions 5.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

## Unit 1: Algebra foundations

Unit 2: solving equations & inequalities, unit 3: working with units, unit 4: linear equations & graphs, unit 5: forms of linear equations, unit 6: systems of equations, unit 7: inequalities (systems & graphs), unit 8: functions, unit 9: sequences, unit 10: absolute value & piecewise functions, unit 11: exponents & radicals, unit 12: exponential growth & decay, unit 13: quadratics: multiplying & factoring, unit 14: quadratic functions & equations, unit 15: irrational numbers, unit 16: creativity in algebra.

Get 25% off all test packages.

## Get 25% off all test packages!

Click below to get 25% off all test packages.

## How To Solve Equations With Fractions

What is an equation.

An equation is a statement used in mathematics to show that two items are equal. In fractions, an equation is used to find the value of a fraction when one or more of its parts are unknown.

If you’re stuck on a math problem that involves fractions, don’t worry! In this article, we’ll show you how to solve equations with fractions step by step.

## Step 1: Find the least common denominator

Firstly we need to find the least common denominator (LCD) of the fractions found in the equation, which is the smallest number that can be a common denominator for both of the fractions. For this equation the LCD is 12 as this is the lowest common multiple of 4 and 6.

## Step 2: Multiply the least common denominator

Multiply the LCD to both sides of the equation.

## Step 3: Simplify the equation

Simplify both sides of the equation and make sure we’re only working with whole numbers.

## Step 4: Simplify until there's one term on both sides

Move all terms with the variable on one side and further simplify both sides of the Equations so we have one term on both sides.

## Step 5: Divide the coefficient on both sides

Once the variable is isolated on one side, divide the coefficient on both sides to solve for the unknown variable.

## Examples of how to solve equations with fractions

Q1) Find the value of x in:

First, let’s find the least common denominator (LCD) of the fractions:

6=2×3 15=3×5 LCD:2×3×5=30

Multiply 30 on both sides of the equation. Make sure to simplify after distributing 30.

Move 6x on on the left-hand side of the equation to isolate the term with the variable.

20x-6x=60 14x=60

Divide 14 on both sides of the equation to solve for x.

Q2) An unknown fraction is added to 1 and we divide the sum by 3. The result is equal to 3/4. What is the value of the unknown fraction?

We can let n be the unknown number. We can set up the equation to solve the problem.

First, look for the least common denominator (LCD). Since 3 and 4 don’t share any common factors, we find their product.

Multiplying 12 to both sides of the equation, we have:

Move 4 on the right-hand side of the equation.

4n=9-4 4n=5

Divide both sides by 4 to isolate n.

Hence, the unknown fraction is equal to 5/4.

## Enjoy what you’ve read? Let others know!

- Share on whatsapp
- Share on linkedin
- Share on twitter
- Share on facebook
- Share via email

By using our website you agree with our Cookie Policy.

## IMAGES

## VIDEO

## COMMENTS

Simplify fractions (practice) | Fractions | Khan Academy Arithmetic (all content) Course: Arithmetic (all content) > Unit 5 Lesson 8: Equivalent fractions 2 More on equivalent fractions Equivalent fractions Equivalent fractions Equivalent fractions 2 Equivalent fractions review Equivalent fractions and different wholes

Worksheet Black/White Circle to Fraction B/W Fraction to Circle B/W Line to Fraction B/W Fraction to Line B/W Conversions Worksheet Simplify Fractions Mixed to Improper Fractions Improper to Mixed Fractions Fractions - Addition Worksheet Example Fractions (Same Denominator) 1 5 + 2 5 Unit Fractions 1 3 + 1 9 Easy Proper Fractions 3 8 + 2 7

To solve the equation (3/4)x + 2 = (3/8)x - 4, we first eliminate fractions by multiplying both sides by the least common multiple of the denominators. Then, we add or subtract terms from both sides of the equation to group the x-terms on one side and the constants on the other. Finally, we solve and check as normal.

Khan Academy's 100,000+ free practice questions give instant feedback, don't need to be graded, and don't require a printer. Math Worksheets. Khan Academy. Math worksheets take forever to hunt down across the internet. Khan Academy is your one-stop-shop for practice from arithmetic to calculus. Math worksheets can vary in quality from ...

In Algebra, each term within an equation is separated by a plus (+) sign, minus (-) sign or an equals sign (=). Variable or quantities that are multiplied or divided are considered the same term. That last example is the most important to remember. If a quantity is in parentheses, it it considered one term!

Practice Makes Perfect. Determine Whether a Fraction is a Solution of an Equation. ... Solve Equations with Fractions using the Addition, Subtraction, and Division Properties of Equality. In the following exercises, solve. 502. y + 1 3 = 4 3 y + 1 3 = 4 3. 503. m + 3 8 = 7 8 m + 3 8 = 7 8. 504. f + 9 10 = 2 5 f + 9 10 = 2 5.

Arithmetic Unit 4: Understand fractions 1,100 possible mastery points Mastered Proficient Familiar Attempted Not started Quiz Unit test About this unit From cooking measurements to geometry, fractions are all around us.

Math Games motivates students to practice and hone this important skill by blending learning with play in its appealing online games! Pupils can use our resources to practice: Understanding, identifying and comparing fractions of numbers and shapes. Making equivalent fractions and reducing fractions. Performing calculations with fractions and ...

Equations with variables on both sides. Solve for f . Stuck? Review related articles/videos or use a hint. Learn for free about math, art, computer programming, economics, physics, chemistry, biology, medicine, finance, history, and more. Khan Academy is a nonprofit with the mission of providing a free, world-class education for anyone, anywhere.

II. Multiple Fractions on Either Side of the Equation. Equations d) and e) in Example 24.1 fall into this category. We solve these equations here. We use the technique for combining rational expressions we learned in Chapter 23 to reduce our problem to a problem with a single fraction on each side of the equation. d) Solve \(\frac{3}{4}-\frac{1 ...

Solution. Multiply both sides of the equation by the least common denominator for the fractions that appear in the equation. − 8 9x = 5 18 Original equation. 18( − 8 9x) = 18( 5 18) Multiply both sides by 18. − 16x = 5 On each side, cancel and multiply. 18( − 8 9) = − 16 and 18( 5 18) = 5.

Equations with fractions involve solving equations where the unknown variable is part of the numerator and/or denominator of a fraction. The numerator (top number) in a fraction is divided by the denominator (bottom number).

Fraction circle manipulatives are mainly used for comparing fractions, but they can be used for a variety of other purposes such as representing and identifying fractions, adding and subtracting fractions, and as probability spinners. There are a variety of options depending on your purpose.

Multiply both sides of the equation by the LCD (to remove the fractions). Solve the equation. Check the solution. The following diagram gives an example of solving fractional equation. Scroll down the page for more examples and solutions of solving fractional equations. ... Try the free Mathway calculator and problem solver below to practice ...

Solving Equations With Fractions Worksheets. Solving equations with fractions worksheets have a wide range of questions that help students practice questions and understand how to solve equations with fractions. The various formats of questions supported by these worksheets keep the learning experience fun and engaging.

The answer is 1 8. Let's look at solving an equation involving fractions. Solve the following equation for ' x '. x − x 2 − 1 12 = 5 6. First, isolate the variable ' x ' by adding 1 12 to both sides of the equation. x − x 2 − 1 12 + 1 12 = 5 6 + 1 12. Next, simplify both sides of the equation.

Math Practice. Fraction. This page covers topics on adding, subtracting and multiplying fractions for students of different ages and abilities. Just spending 30-minute each day will help strength their skills and ace in school tests.

There are lots of strategies we can use to solve equations. Let's explore some different ways to solve equations and inequalities. We'll also see what it takes for an equation to have no solution, or infinite solutions. Linear equations with variables on both sides Learn Why we do the same thing to both sides: Variable on both sides

Fractions Fractions of Measurements Fractions of Measurements 2 Adding Fractions Subtracting Fractions Adding Fractions: Fill in the Blank Multiplication: Fractions 1 Multiplication: Fractions 2 Division: Fractions 1 Division: Fractions 2 Division: Fractions 3 Decimals Addition (Decimals)

The Algebra 1 course, often taught in the 9th grade, covers Linear equations, inequalities, functions, and graphs; Systems of equations and inequalities; Extension of the concept of a function; Exponential models; and Quadratic equations, functions, and graphs. Khan Academy's Algebra 1 course is built to deliver a comprehensive, illuminating, engaging, and Common Core aligned experience!

This process is called clearing the equation of fractions. Let's solve the same equation again, but this time use the method that clears the fractions. Example 8.6.1: Solve: 1 8x + 1 2 = 1 4. Solution. Find the least common denominator of all the fractions in the equation. 1 8x + 1 2 = 1 4 LCD = 8.

In fractions, an equation is used to find the value of a fraction when one or more of its parts are unknown. If you're stuck on a math problem that involves fractions, don't worry! In this article, we'll show you how to solve equations with fractions step by step. Step 1: Find the least common denominator

Here is a set of practice problems to accompany the Linear Equations section of the Solving Equations and Inequalities chapter of the notes for Paul Dawkins Algebra course at Lamar University.